

Mark Scheme (Results) January 2012

GCE Chemistry (6CH02) Paper 01 Application of Core Principles of Chemistry

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at <u>www.edexcel.com</u>.

For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at <u>www.btec.co.uk</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Subject Advisor directly by sending an email to <u>ScienceSubjectAdvisor@EdexcelExperts.co.uk_</u>.

You can also telephone 0844 576 0037 to speak to a member of our subject advisor team.

(If you are calling from outside the UK please dial + 44 1204 770 696 and state that you would like to speak to the Science subject specialist).

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012 Publications Code US030263

All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an **asterix (*)** are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Correct Answer	Reject	Mark
Number			
1 (a)	В		1
(b)	D		1
(c)	A		1
Question	Correct Answer	Reject	Mark
Number		5	
2	С		1
Question	Correct Answer	Reject	Mark
Number		, , , , , , , , , , , , , , , , , , ,	
3	В		1
Question	Correct Answer	Reject	Mark
Number		-5	
4	D		1
L			
Question	Correct Answer	Reject	Mark
Number		, , , , , , , , , , , , , , , , , , ,	
5	С		1
		· · ·	
Question	Correct Answer	Reject	Mark
Number			
6	A		1
		•	
Question	Correct Answer	Reject	Mark
Number		5	
7	A		1
<u> </u>		•	
Question	Correct Answer	Reject	Mark
Number			
8	С		1
		•	
Question	Correct Answer	Reject	Mark
Number			

Question Number	Correct Answer	Reject	Mark
10	В		1

Question Number	Correct Answer	Reject	Mark
11	В		1

9 B

1

Question Number	Correct Answer	Reject	Mark
12	A		1

Question Number	Correct Answer	Reject	Mark
13	В		1

Question Number	Correct Answer	Reject	Mark
14	A		1

Question Number	Correct Answer	Reject	Mark
15	D		1

Question Number	Correct Answer	Reject	Mark
16 (a)	С		1
(b)	D		1

Question Number	Correct Answer	Reject	Mark
17	D		1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
18(a)	London/dispersion forces greater (ALLOW 'more') (in HI) ALLOW van der Waals forces/ temporary dipole (forces)/induced dipole (forces) Just 'Intermolecular (forces)' does not score this mark		3
	Stand alone mark (1)		
	Any two from		
	Because (Iodine/HI) has more electrons/iodine has more electron shells ALLOW bigger surface area (1)	Iodide/bromide More electrons in the bond HI has more electron shells	
	(So) more energy needed (ALLOW 'harder') to separate molecules / break the (London) forces ALLOW more energy needed to boil compound ALLOW intermolecular (forces) here (1)	Just 'easier to boil compound'	
	Permanent dipole in HI is weaker than the permanent dipole in HBr (1)		
	The increase in London forces (from HCl to HI) outweighs the decrease in permanent dipole (1)		

Question Number	Acceptable Answers	Reject	Mark
18(b)	HF has hydrogen bonding (and HCl does not)	Just `HF has stronger intermolecular	3
	Stand alone mark (1)	forces (than HCI)'	
	Any two from	HF/F ⁻ for fluorine	
	Fluorine very electronegative/more electronegative than chlorine (1)		
	Hydrogen bonding is (much) stronger (than other/named intermolecular forces) ALLOW Hydrogen bonding is (very) strong (1)		
	So more energy needed (ALLOW 'harder') to separate molecules/ break the hydrogen bonds ALLOW more energy needed to boil compound (1)	Just 'easier to boil compound'	
	HCl has London/dispersion (and (weak) dipole-dipole) forces ALLOW (weak) dipole-dipole forces ALLOW 'Only London/dispersion forces' (1)		
	ALLOW van der Waals forces/ temporary or induced dipole forces for London/dispersion		

Question Number	Acceptable Answers	Reject	Mark
18(c)	Water forms (up to) two hydrogen bonds (per molecule but HF only one). IGNORE references to numbers of lone pairs.	More/stronger/ greater than two	1

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	Time for the first (permanent) cloudiness to appear in the limewater ALLOW Time for the limewater to turn milky/cloudy ALLOW Time for the limewater to turn milky/cloudy and (ppt) to dissolve ALLOW how long for time IGNORE references to volume of CO ₂	How fast/how quickly	1

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	Any three from		3
	Constant Bunsen flame/electrical heater setting	Constant temp/ heat Water bath	
	Fixed height of test tube above the flame	Fixed angle	
	Fixed moles/(ALLOW mass/amount) of carbonate	Volume/quantity	
	Fixed volume/amount/mass of limewater	Concentration / quantity	
	Penalise use of quantity once only		
	Same surface area/particle size (of solid)		
	Standardise cloudiness of limewater using the disappearance of a cross (or similar)		
	IGNORE repeats & use same measuring instruments /same person		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	More stable/(thermal stability) increases (as the group is descended)		1

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	Ignore an incorrect answer to 19b(i) and mark statements given independently Cation/positive (ALLOW metal) ion becomes larger (charge unchanged) OR cation charge density reduced	Atomic/metal radius/charge density of atom /	3
	(1)	molecule	
	IGNORE references to shielding		
	Polarisation/distortion reduced (1)		
	(ALLOW polarising power reduced)		
	of carbonate electron cloud/ carbonate ion/C-O bonds /anion (1)		
	OR reverse argument for stability decreasing as group ascended		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(i)	Throughout 20 (a): IGNORE sf except 1 sf (penalise once) correct answer with no working scores full marks mark consequentially IGNORE units unless incorrect $0.109 \times 27.35 \times 10^{-3}$ (1) = 2.98115 x 10 ⁻³ (mol) = 2.98 x 10 ⁻³ / 0.00298(mol) (1) cq only on some concentration x some volume	0.003	2

Question Number	Acceptable Answers	Reject	Mark
20 (a)(ii)	Moles $I_2 = 0.5 \text{ x}$ moles thiosulfate = 0.5 x answer to (a)(i) = 1.490575 x $10^{-3} = 1.49 \text{ x}$ $10^{-3} / 0.00149 \text{(mol)}$		1

Question	Acceptable Answers	Reject	Mark
Number			
20	Moles of Cl_2 = moles of I_2 =		1
(a)(iii)			
	= 1.49 x 10 ⁻³ /0.00149(mol)		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(iv)	. ,		2
	(= amount in 10 cm ³ of disinfectant) Concentration = 100 x previous value (= 1000 x $3.73 \times 10^{-2}/10 =$ $3.73 \pmod{\text{dm}^{-3}}$) (1) Concentration = 100 x answer to (a)(iii) scores (1)		

Question Number	Acceptable Answers	Reject	Mark
20(b)	(Atoms of) the same element (in the same species) are oxidized and reduced (1) ALLOW chlorine for 'element'	Molecule/substance/ reactant /species	3
	Chlorine ON 0 oxidized to (+)1 in ClO ⁻ (1)	Just Cl oxidized & reduced	
	and reduced to -1 in Cl ⁻ (1)		
	Only penalise once if oxidized and reduced omitted		
	Just 'Chlorine ON 0 oxidized to $(+)1$ and reduced to $-1'$ or 'Chlorine oxidized to chlorate(I) and reduced to chloride'(1 mark only)		
	Only penalise once if oxidized and reduced reversed		

Question Number	Acceptable Answers	Reject	Mark
20(c)	Colour just before adding the starch: (very) pale yellow/straw coloured (1)	Just `yellow', brown, gold	2
	Colour after adding the starch: Blue-black (ALLOW black or (dark) blue)	purple	
	Colour at the end point: colourless (1)		
	Both colours required		
	IGNORE 'Clear'		

Question Number	Acceptable Answers	Reject	Mark
21(a)	Names OR Formulae A = NaOH/KOH in ethanol	Water + ethanol /water	4
	/alcohol (1)	+ alcohol For A and B OH ⁻ /alkali (penalise once)	
	B = NaOH/KOH in water/ aqueous(1)IGNORE any reference to ethanol /alcohol /dilute		
	C = NaBr/KBr & (50% or moderately conc) H_2SO_4 / P & Br ₂ / PBr ₃ /PBr ₅ /NaBr	Dilute H_2SO_4	
	/KBr & H ₃ PO ₄ /HBr ALLOW phosphorus bromide (1)	any mention of alkali	
	IGNORE red/white (phosphorus)		
	$D = NH_3$ (in alcohol /in a sealed tube /at high pressure) (1)	any mention of acid	
	IGNORE aqueous		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	A = elimination (1) IGNORE 'nucleophilic' D = (nucleophilic) substitution (1)	mention of dehydration in A mention of electrophilic in A or D	2

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	Mark the diagrams; then mark the explanation sections together Score (1) for intermediate/ transition state wrong way round		4
	$\begin{bmatrix} C_{3}H_{7} \\ H \longrightarrow O \\ H \end{pmatrix} \xrightarrow{\bigcirc} H H H \end{bmatrix}$	Full O—C—Br bonds OH—C	
	IGNORE geometry and missing minus sign and $\delta + / \delta$ - (1)	+ sign	
	H ₃ CĊ⊕ CH ₃	δ+	
	(1)		
	Any two from		
	Tertiary carbocation more stable (than primary carbocation) ALLOW Tertiary carbocation very stable/fairly stable/stable (1) This mark can be awarded even if structures and other explanations are incorrect or missing	Just `primary carbocation unstable'	
	Methyl groups stabilise charge (of carbocation) (through positive inductive effect)		
	Steric hindrance (by methyl groups) inhibits formation of (trigonal bipyramid) transition state/attack by nucleophile with tertiary compound		
	Steric hindrance is less with the primary halogenoalkane/more with tertiary halogenoalkane		
	ALLOW a description of steric hindrance e.g. blocking/less space		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	C–I bond weaker ALLOW C–I bond easier to break	Just C–I bond longer	1
	ALLOW iodine forms weaker bonds than bromine without mention of carbon		
	ALLOW reverse arguments with C–Br bond stronger		
	IGNORE Explanations in terms of electronegativity or bond polarity or activation energy or shielding even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
21 (c)(i)	 (Boiling) absorbs heat (allow energy)/latent heat (of vaporization)/enthalpy of vaporization from the surroundings/endothermic. If bonds are mentioned they must be intermolecular 		1

Question Number	Acceptable Answers	Reject	Mark
21 (c)(ii)	Any two from		2
	Not flammable Not toxic	Does not produce CFCs Gas/solid	
	Unreactive/inert/non-corrosive	Gas/ Solid	
	(only one of these can score) (easily) compressible	stable	
	does not harm the ozone layer		
	Boiling temperature below target temperature		
	ALLOW low boiling		
	temperature		
	high heat of vaporization high gas density		
	high critical temperature		
	IGNORE Non-polluting/		
	environmentally friendly/ cheap/easily manufactured/		
	easy to store/easy to contain		
	/take up little space/low melting point/endothermic/		
	harmful		

Question Number	Acceptable Answers	Reject	Mark
22 (a)	$N_2 + O_2 \rightarrow 2NO \text{ or } \frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$ Or multiples ALLOW extra oxygen or nitrogen molecules provided equation is balanced IGNORE state symbols even if incorrect ALLOW \Rightarrow and 2NO		1

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	Free radical(s)		1
	ALLOW recognisable spellings e.g. radicle		

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Homolytic (fission)		1
	ALLOW recognisable spellings e.g. homolitic		

Question Number	Acceptable Answers	Reject	Mark
22(c)(i)	(unburnt) fuel/petrol/diesel/ kerosene (aviation fuel) ALLOW Car exhaust fumes/ fossil fuels/oil IGNORE burning/combustion except if stated as complete	Engines/factories/cattle/ methane/ethane/crude oil/ natural gas/coal/pollution	1

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	Oxidation	Redox Addition oxidation	1
	ALLOW partial oxidation		

Question Number	Acceptable Answers	Reject	Mark
22(c)(iii)	0	displayed or structural or molecular formulae or skeletal showing any H	1
	IGNORE angles provided clearly 3 carbons	atoms	

Question Number	Acceptable Answers	Reject	Mark
22(c)(iv)	NO removed so less O ₃ broken down/NO reacts with hydrocarbon rather than O ₃ so less O ₃ broken down IGNORE build up of ozone	Just `less O3 broken down'	1

Question Number	Acceptable Answers	Reject	Mark
22(d)	(At high altitudes) intensity of UV (radiation/light) is greater (1) ALLOW more UV	NO2 removed before it gets to high altitudes more sunlight	2
	So conversion of NO ₂ to NO will increase (1)		
	ALLOW (At high altitudes) pressure is lower(1)	less oxygen	
	So equilibrium $2NO(g) + O_2(g)$ $\Rightarrow 2NO_2(g)$ shifts to the left (1)		

Question Number	Acceptable Answers	Reject	Mark
22(e)	Ozone absorbs/blocks/filters/ protects against ALLOW removes (all) UV radiation (1)	Sunlight; Infrared; reflects	2
	UV/sunlight is biologically harmful/causes genetic damage/causes (skin) cancer/causes eye cataracts (1)	Just 'harmful' Effect of radiation without any mention of UV or sunlight	
	Reference to global warming max (1)		

Question Number	Acceptable Answers	Reject	Mark
22(f)(i)	$2NO + 2CO \rightarrow N_2 + 2CO_2$ $OR NO + CO \rightarrow \frac{1}{2}N_2 + CO_2$ $Or multiples$ $IGNORE state symbols even if$ incorrect $ALLOW \Rightarrow$		1

Question Number	Acceptable Answers	Reject	Mark
22(f)(ii)	Energy / enthalpy 2NO + 2CO H N ₂ + 2CO ₂		3
	(progress of reaction) ALLOW names or symbols in diagram		
	ALLOW double headed arrows or headless arrows	Reversed arrows	
	IGNORE Maxwell Boltzmann distributions First mark		
	Labelled y axis and reactants and products ALLOW potential energy (1) IGNORE units IGNORE formula errors and x axis labels even if incorrect ALLOW 'reactants' and 'products' as labels	Energy change or enthalpy change or $\triangle H$	
	Second mark		
	Exothermic reaction and $\triangle H$ label(1)IGNORE negative sign on $\triangle H$		
	Third markActivation energy line and labelOR a double hump with higher first (smooth curve is not needed)(1)	Any other humped diagram	

Question Number	Acceptable Answers	Reject	Mark
22(f)(iii)	Catalyst provides an alternative route/mechanism (1) with lower activation energy ALLOW low activation energy (1)		3
	So a higher proportion (ALLOW more) molecules / collisions (ALLOW reactants) have energy equal to or greater than Ea ALLOW 'so more molecules react' (1)		

Question Number	Acceptable Answers	Reject	Mark
22(g)	Aircraft (release NO) closer to the ozone layer/(atmosphere) at high altitude/in the stratosphere (1)	Just 'atmosphere'	2
	IGNORE greenhouse gases at this point		
	So less NO is lost through competing / other reactions (1)		
	ALLOW broken down		
	ALLOW NO (released at ground level) dissipated (e.g. by reaction with oxygen or hydrocarbons or by reaction to form ozone (as in the passage))		

TOTAL FOR SECTION B = 60 MARKS

TOTAL FOR PAPER = 80 MARKS

Further copies of this publication are available from International Regional Offices at <u>www.edexcel.com/international</u>

For more information on Edexcel qualifications, please visit <u>www.edexcel.com</u>

Alternatively, you can contact Customer Services at <u>www.edexcel.com/ask</u> or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

